Building and testing any production car is a fiendishly complex undertaking, but some cars require more time and attention than others – Bugatti's new supercar, for example. Production of the Bugatti Chiron has officially started in Molsheim, and the company has peeled back the curtain to show the world how 1,800 individual parts come together to make someone's dream a very, very expensive reality.
The
production process starts, as you'd expect, with the customer nailing
down the final specification of their car. Potential owners sit down
with a consultant from Bugatti and run through the full range of
options, choosing from a huge palette of standard paints and eight
different carbon fiber weaves for the exterior before moving to the
interior.
Here's a hot tip:
if you're not good at making decisions, don't try and configure the
cabin of a Chiron. As if choosing between 31 different types of leather
and eight shades of suede wasn't enough, you can select a dizzying array
of carpet, seatbelt and stitching options. And if that still
isn't enough, the team at Le Maison Pur Sang is able to make an owner's
most intricate fancies come to life with custom paint finishes,
interior trims and option packs.
Once
the customer has signed off on their final configuration, a production
slot is assigned to the car and parts are ordered, starting a process
generally spanning nine months. Before all the additional parts arrive,
the naked bodyshell is assembled and sent to the paint shop, where it's
lavished with up to eight coats of paint. Each layer is done by hand,
sanded back and polished before the next is applied – while cars with
naked carbon fiber on the outside go through a separate, equally time
consuming process.
Unlike most car factories, Bugatti's facility in Molsheim isn't fitted with conveyer belts or robots. The entire production process is carried out by hand across 12 individual stations, each of which is responsible for a small part of the overall construction of the car. The first station takes the quad-turbo W16, which comes pre-assembled from VW in Salzgitter, and prepares it for insertion into the chassis, before the second stop actually installs it.
Given
its remarkable 1,500 hp (1,119 kW) of power and 1,600 Nm of torque, the
engine can't simply be dropped into the rear of the Chiron and bolted
into place like most cars. The whole rear end is actually built around
the engine, while the base monocoque and front end are connected and the
wiring looms linked. Around the same time as all of this, the pipes
connecting the engine with its front radiators are hooked up.
Having
married the rear end with the monocoque, a feat which requires just 14
titanium bolts, the four wheels are bolted on and the car rolls forward
to its next station, where all the fluids are put into the car, and the
engine is fired up for the first time.
Although Bugatti had already built a specific dynamometer to test the Veyron, it couldn't handle the power and torque being put down by the overhauled W16 in the Chiron, so the team totally rebuilt it. The result is the most powerful rolling dyno in the world. It's installed in a room all of its own, and can run at up to 200 km/h (124 mph) while the Chiron accelerates flat out with an engineer behind the wheel. All up, the tests take around three hours, monitoring the connection between engine and gearbox, the airflow meter, clutch and electronic driver aids.
Once
it's survived all of the tests on the rolling dyno, the Chiron is
finally fitted with all its exterior panels. Given how thin some of the
carbon panels are, they're actually subjected to a pre-assembly stage,
where a team of technicians installs them on special frames and checks
for any structural or cosmetic damage. The process is set up to closely
mirror the real deal, which
means the frames have the same mounting points as the car, and the
lighting in the pre-assembly area is deliberately set up to match the
real factory.
In spite of
this extensive preparation, it can take between two and three days to
have the panels installed and adjusted to meet the strict tolerances
prescribed by Bugatti. Once they are (finally) in place, the car is put
through a 30 minute monsoon test to make sure there aren't any leaks.
Only once this test has been successfully completed can the interior be
installed and the final, real-world shakedown take place.
As you might imagine, owners
wouldn't be particularly pleased to receive their new Bugatti with
chipped paint and dirty wheels caused by its final shakedown, so the
engineers in Molsheim swap the final wheels and underbody for a standard
factory set, and spend a day wrapping the exterior in protective foil.
The car is then driven 300 km (186 mi) to an airport, where it's put
through its paces beyond 250 km/h (155 mph) on the runway. The drive
home is completed on the autobahn, the transmission oil is changed and
the Chiron is put through one more 50 km (31 mi) drive before it's given
the all-clear.
Having
completed all the necessary performance tests, the Chiron is stripped of
its foil wrap for a clean and polish. After two days of paint
preparation, the car is transferred to a special light tunnel, where a
specialist inspects the top coat and marks out any blemishes for the
paint shop to polish out. Having received the approval of the paint shop
manager, the car is then inspected by the Head of Sales, who will
provide managerial approval and organize an occasion to have the car
handed to the customer.
If
all of this sounds like overkill to you, it's worth remembering each
Chiron costs at least US$2,612,000 before options. The customers buying
one of these cars expect perfection, and Bugatti has built its
reputation on delivering just that.
Now, we have an idea of how they do it.
Source: Bugatti
No comments:
Post a Comment